Tuesday, October 25, 2016

Gleitender Durchschnitt Eviews

Bei der Berechnung eines laufenden Gleitendurchschnitts ist es sinnvoll, den Mittelwert in der mittleren Zeitperiode einzutragen. Im vorigen Beispiel haben wir den Durchschnitt der ersten 3 Zeiträume berechnet und neben der Periode 3 platziert. Wir konnten den Mittelwert in der Mitte des Zeitintervall von drei Perioden, das heißt, neben Periode 2. Dies funktioniert gut mit ungeraden Zeitperioden, aber nicht so gut für sogar Zeitperioden. Also, wo würden wir den ersten gleitenden Durchschnitt platzieren, wenn M 4 Technisch, würde der Moving Average bei t 2,5, 3,5 fallen. Um dieses Problem zu vermeiden, glätten wir die MAs unter Verwendung von M 2. So glätten wir die geglätteten Werte Wenn wir eine gerade Anzahl von Terme mitteln, müssen wir die geglätteten Werte glätten Die folgende Tabelle zeigt die Ergebnisse unter Verwendung von M 4.A Zeitreihen ist eine Sequenz Der Beobachtungen einer periodischen Zufallsvariablen. Beispiele dafür sind die monatliche Nachfrage nach einem Produkt, die jährliche Neueinreichung in einer Abteilung der Universität und die täglichen Flüsse in einem Fluss. Zeitreihen sind wichtig für Operations Research, weil sie oft die Treiber von Entscheidungsmodellen sind. Ein Inventarmodell erfordert Schätzungen zukünftiger Anforderungen, ein Kursterminierungs - und Personalmodell für eine Universitätsabteilung erfordert Schätzungen des zukünftigen Zuflusses von Schülern und ein Modell für die Bereitstellung von Warnungen für die Bevölkerung in einem Flusseinzugsgebiet erfordert Schätzungen der Flussströme für die unmittelbare Zukunft. Die Zeitreihenanalyse liefert Werkzeuge zur Auswahl eines Modells, das die Zeitreihen beschreibt und das Modell zur Prognose zukünftiger Ereignisse verwendet. Das Modellieren der Zeitreihen ist ein statistisches Problem, da beobachtete Daten in Berechnungsverfahren verwendet werden, um die Koeffizienten eines vermeintlichen Modells abzuschätzen. Modelle gehen davon aus, dass Beobachtungen zufällig über einen zugrunde liegenden Mittelwert, der eine Funktion der Zeit ist, variieren. Auf diesen Seiten beschränken wir die Aufmerksamkeit auf die Verwendung von historischen Zeitreihendaten, um ein zeitabhängiges Modell abzuschätzen. Die Methoden eignen sich zur automatischen, kurzfristigen Prognose häufig verwendeter Informationen, bei denen sich die zugrunde liegenden Ursachen der zeitlichen Variation nicht rechtzeitig ändern. In der Praxis werden die von diesen Methoden abgeleiteten Prognosen anschließend von menschlichen Analytikern modifiziert, die Informationen enthalten, die aus den historischen Daten nicht verfügbar sind. Unser Hauptziel in diesem Abschnitt ist es, die Gleichungen für die vier Prognosemethoden zu präsentieren, die im Prognose-Add-In verwendet werden: gleitender Durchschnitt, exponentielle Glättung, Regression und doppelte exponentielle Glättung. Diese werden als Glättungsmethoden bezeichnet. Zu den nicht berücksichtigten Methoden gehören qualitative Prognose, multiple Regression und autoregressive Methoden (ARIMA). Die, die an der umfangreicheren Abdeckung interessiert sind, sollten die Prognoseprinzipien Aufstellungsort besuchen oder ein der ausgezeichneten Bücher auf dem Thema lesen. Wir verwendeten das Buch Prognose. Von Makridakis, Wheelwright und McGee, John Wiley amp Sons, 1983. Um die Excel-Beispiele-Arbeitsmappe zu verwenden, muss das Prognose-Add-In installiert sein. Wählen Sie den Relink-Befehl, um die Links zum Add-In zu erstellen. Diese Seite beschreibt die Modelle für die einfache Prognose und die Notation für die Analyse verwendet. Diese einfachste Prognosemethode ist die gleitende Durchschnittsprognose. Die Methode ist einfach Mittelwerte der letzten m Beobachtungen. Es ist nützlich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Diese Methode berücksichtigt die gesamte Vergangenheit in ihrer Prognose, aber wiegt jüngste Erfahrungen stärker als weniger jüngste. Die Berechnungen sind einfach, da nur die Schätzung der vorherigen Periode und die aktuellen Daten die neue Schätzung bestimmen. Das Verfahren eignet sich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Die Methode des gleitenden Mittels reagiert nicht gut auf eine Zeitreihe, die mit der Zeit zunimmt oder abnimmt. Hierbei handelt es sich um einen linearen Trendbegriff im Modell. Das Regressionsverfahren nähert sich dem Modell an, indem es eine lineare Gleichung erstellt, die die kleinsten Quadrate für die letzten m Beobachtungen bietet. EViews Übersicht: Datenverwaltung Teil 3: Ausgefeiltes Datenmanagement Leistungsstarke analytische Tools sind nur dann sinnvoll, wenn Sie mit Ihren Daten problemlos arbeiten können. EViews bietet die breiteste Palette an Datenmanagement-Tools, die in jeder ökonometrischen Software zur Verfügung stehen. Mit der umfangreichen Bibliothek von mathematischen, statistischen, Datums-, String - und Zeitreihenoperatoren und - funktionen bietet EViews eine umfassende Unterstützung für numerische, Zeichen - und Datumsdaten und bietet damit die Datenverarbeitungsfunktionen, die Sie von modernen statistischen Software erwarten können. Umfangreiche Funktionsbibliothek EViews enthält eine umfangreiche Bibliothek mit Funktionen zum Arbeiten mit Daten. Neben den standardmäßigen mathematischen und trigonometrischen Funktionen bietet EViews Funktionen für deskriptive Statistiken, kumulative und bewegte Statistiken, Gruppenstatistiken, spezielle Funktionen, spezialisierte Datums - und Zeitreihenoperationen, Workfile, Wertzuordnungen und finanzielle Berechnungen. EViews bietet auch Zufallszahlengeneratoren (Knuth, LEcuyer oder Mersenne-Twister), Dichtefunktionen und kumulative Verteilungsfunktionen für achtzehn verschiedene Verteilungen. Diese können bei der Generierung neuer Serien oder bei der Berechnung von Skalar - und Matrix-Ausdrücken verwendet werden. EViews bietet eine umfangreiche Funktionsbibliothek. Ausgefeilte Ausdrucksbearbeitung Mit den leistungsstarken Tools von EViews für die Ausdrucksbearbeitung können Sie Ausdrücke praktisch überall verwenden, wo Sie eine Serie verwenden möchten. Sie müssen keine neuen Variablen erstellen, um mit dem Logarithmus von Y, dem gleitenden Durchschnitt von W oder dem Verhältnis von X zu Y (oder einem anderen gültigen Ausdruck) zu arbeiten. Stattdessen können Sie den Ausdruck in der Berechnung deskriptiver Statistiken, als Teil einer Gleichung oder Modellspezifikation oder beim Erstellen von Graphen verwenden. Wenn Sie eine Gleichung mit einem Ausdruck für die abhängige Variable prognostizieren, ermöglicht EViews (wenn möglich), die zugrundeliegende abhängige Variable zu prognostizieren und das geschätzte Konfidenzintervall entsprechend anzupassen. Wenn zum Beispiel die abhängige Variable als LOG (G) angegeben ist, können Sie entweder das Protokoll oder den Pegel von G prognostizieren und das entsprechende, möglicherweise asymmetrische Konfidenzintervall berechnen. Arbeiten Sie direkt mit Ausdrücken an Stelle von Variablen. Links, Formeln und Werte Maps Link-Objekte ermöglichen das Erstellen von Serien, die mit Daten in anderen Workfiles oder Workfile-Seiten verknüpft sind. Links ermöglichen das Kombinieren von Daten mit unterschiedlichen Frequenzen oder das Zusammenführen von Daten aus einer Zusammenfassungsseite in eine einzelne Seite, so dass die Daten dynamisch aktualisiert werden, wenn sich die zugrunde liegenden Daten ändern. Ähnlich können innerhalb einer Arbeitsdatei Datenreihen Formeln zugewiesen werden, so dass die Datenreihen automatisch neu berechnet werden, wenn die zugrunde liegenden Daten modifiziert werden. Auf numerische oder alpha-Reihen können Wertkennzeichnungen (z. B. quotHighquot, quotMedquot, quotLowquot, entsprechend 2, 1, 0) angewendet werden, so daß kategorische Daten mit aussagekräftigen Labels angezeigt werden können. Mit eingebauten Funktionen können Sie mit den zugrundeliegenden oder den zugeordneten Werten arbeiten, wenn Sie Berechnungen durchführen. Links können für dynamische Frequenzumsetzung oder Matchmischung verwendet werden. Datenstrukturen und - typen EViews können komplexe Datenstrukturen verarbeiten, einschließlich regelmäßiger und unregelmäßig datierter Daten, Querschnittsdaten mit Beobachtungskennungen und datierten und undatierten Felddaten. Zusätzlich zu numerischen Daten kann eine EViews-Workfile auch alphanumerische Zeichen (Zeichenfolge) und Serien mit Daten enthalten, die alle mit einer umfangreichen Funktionsbibliothek manipuliert werden können. EViews bietet außerdem eine breite Palette an Tools für das Arbeiten mit Datensätzen (Workfiles), Daten, einschließlich der Kombination von Serien mit komplexen Match Merge-Kriterien und Workfile-Prozeduren zum Ändern der Struktur Ihrer Daten: Join, Append, Subset, Größe, Sortierung und Umgestalten (stack and unstack). EViews-Workfiles können sehr strukturiert sein. Enterprise Edition Unterstützung für ODBC, FAME TM. DRIBase und Haver Analytics Datenbanken Als Teil der EViews Enterprise Edition (eine zusätzliche Kostenoption über EViews Standard Edition) wird Unterstützung für den Zugriff auf Daten in relationalen Datenbanken (über ODBC-Treiber) und Datenbanken in einer Vielzahl von proprietären Formaten zur Verfügung gestellt Durch kommerzielle Daten - und Datenbankanbieter. Open Database Connectivity (ODBC) ist ein Standard, der von vielen relationalen Datenbanksystemen wie Oracle, Microsoft SQL Server und IBM DB2 unterstützt wird. Mit EViews können Sie ganze Tabellen aus ODBC-Datenbanken lesen oder schreiben oder aus den Ergebnissen einer SQL-Abfrage eine neue Arbeitsdatei erstellen. EViews Enterprise Edition unterstützt auch den Zugriff auf FAME TM - Datenbanken (sowohl auf lokaler als auch auf Server-Basis). Global Insights DRIPro - und DRIBase-Datenbanken, Haver Analytics DLX-Datenbanken, Datastream, FactSet und Moodys Economy. Die bekannte, einfach zu bedienende Datenbankoberfläche von EViews wurde auf diese Datenformate erweitert, so dass Sie mit fremden Datenbanken so leicht wie native EViews-Datenbanken arbeiten können. Frequency Conversion Wenn Sie Daten aus einer Datenbank oder aus einer anderen Workfile - oder Workfile-Seite importieren, wird sie automatisch in die Häufigkeit Ihres aktuellen Projekts konvertiert. EViews bietet viele Möglichkeiten der Frequenzumsetzung und unterstützt die Umwandlung von täglichen, wöchentlichen oder unregelmäßigen Daten. Serie kann eine bevorzugte Konvertierungsmethode zugewiesen werden, so dass Sie verschiedene Methoden für verschiedene Serien verwenden können, ohne die Konvertierungsmethode bei jedem Zugriff auf eine Reihe angeben zu müssen. Sie können sogar Links erzeugen, so dass die frequenzkonvertierten Datenreihen automatisch neu berechnet werden, wenn die zugrundeliegenden Daten geändert werden. Geben Sie eine Serien-spezifische automatische Konvertierung an oder wählen Sie eine bestimmte Methode aus. Für Verkaufsinformationen bitte email saleseviews Für technischen Support mailen Sie bitte Supportsviews Bitte geben Sie Ihre Seriennummer mit allen E-Mail-Korrespondenz ein. Weitere Informationen finden Sie auf unserer Seite. RIMA steht für Autoregressive Integrated Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosemethode, die die zukünftigen Werte einer Serie, die vollständig auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose mit mindestens 40 historischen Datenpunkten. Es funktioniert am besten, wenn Ihre Daten eine stabile oder konsistente Muster im Laufe der Zeit mit einem Minimum an Ausreißern zeigt. Manchmal nennt man Box-Jenkins (nach den ursprünglichen Autoren), ARIMA ist in der Regel überlegen exponentielle Glättung Techniken, wenn die Daten relativ lange und die Korrelation zwischen vergangenen Beobachtungen ist stabil. Wenn die Daten kurz oder stark flüchtig sind, kann eine gewisse Glättungsmethode besser ablaufen. Wenn Sie nicht über mindestens 38 Datenpunkte verfügen, sollten Sie eine andere Methode als ARIMA betrachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarität impliziert, dass die Reihe auf einem ziemlich konstanten Niveau über Zeit bleibt. Wenn ein Trend besteht, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen im Laufe der Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen der Saisonalität im Laufe der Zeit dramatischer. Ohne dass diese Stationaritätsbedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Die Differenzierung ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu transformieren. Dies geschieht durch Subtrahieren der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Transformation nur einmal zu einer Reihe erfolgt, sagen Sie, dass die Daten zuerst unterschieden wurden. Dieser Prozess im Wesentlichen eliminiert den Trend, wenn Ihre Serie wächst mit einer ziemlich konstanten Rate. Wenn es mit steigender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten erneut differenzieren. Ihre Daten würden dann zweite differenziert werden. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe mit der Zeit auf sich bezieht. Genauer gesagt misst es, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander über die Zeit miteinander korreliert werden. Die Anzahl der Perioden wird in der Regel als Verzögerung bezeichnet. Zum Beispiel misst eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander über die gesamte Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten, die zwei Perioden voneinander getrennt sind, über die gesamte Reihe miteinander korrelieren. Autokorrelationen können im Bereich von 1 bis -1 liegen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe -1 impliziert eine hohe negative Korrelation. Diese Maßnahmen werden meist durch grafische Darstellungen, sogenannte Korrelagramme, ausgewertet. Ein Korrelationsdiagramm zeigt die Autokorrelationswerte für eine gegebene Reihe bei unterschiedlichen Verzögerungen. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion der so genannten autoregressiven und gleitenden Durchschnittsparameter zu beschreiben. Diese werden als AR-Parameter (autoregessiv) und MA-Parameter (gleitende Mittelwerte) bezeichnet. Ein AR-Modell mit nur einem Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihen A (1) der autoregressive Parameter der Ordnung 1 X (t-1) (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der geschätzte Wert von A (1) 0,30 betrug, dann wäre der aktuelle Wert der Reihe mit 30 seines vorherigen Wertes 1 verknüpft. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Zum Beispiel ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2) zuzüglich eines Zufallsfehlers E (t). Unser Modell ist nun ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell wird als gleitendes Durchschnittsmodell bezeichnet. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept dahinter ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t stattfindet, nur auf die zufälligen Fehler, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstatt auf X (t-1), X T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Begriff kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Begriff B (1) wird als MA der Ordnung 1 bezeichnet. Das negative Vorzeichen vor dem Parameter wird nur für Konventionen verwendet und in der Regel ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem Zufallsfehler in der vorherigen Periode E (t-1) und mit dem aktuellen Fehlerterm E (t) zusammenhängt. Wie im Fall von autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf übergeordnete Strukturen mit unterschiedlichen Kombinationen und gleitenden mittleren Längen erweitert werden. Die ARIMA-Methodik erlaubt es auch, Modelle zu erstellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter zusammenführen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für eine kompliziertere Prognose-Tool macht, kann die Struktur tatsächlich simulieren die Serie besser und produzieren eine genauere Prognose. Pure Modelle implizieren, dass die Struktur nur aus AR oder MA-Parameter besteht - nicht beides. Die Modelle, die von diesem Ansatz entwickelt werden, werden in der Regel als ARIMA-Modelle bezeichnet, da sie eine Kombination aus autoregressiver (AR), Integration (I) verwenden, die sich auf den umgekehrten Prozess der Differenzierung bezieht, um die Prognose zu erzeugen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies ist die Reihenfolge der autoregressiven Komponenten (p), der Anzahl der differenzierenden Operatoren (d) und der höchsten Ordnung des gleitenden Mittelwerts. Beispielsweise bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer gleitenden mittleren Komponente erster Ordnung haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Auswahl der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation zu verwenden - i. e. Wie viele AR - und / oder MA-Parameter eingeschlossen werden sollen. Dies ist, was viel von Box-Jenkings 1976 dem Identifikationsprozeß gewidmet wurde. Es hing von der graphischen und numerischen Auswertung der Stichprobenautokorrelation und der partiellen Autokorrelationsfunktionen ab. Nun, für Ihre grundlegenden Modelle, ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Weise aussehen. Allerdings, wenn Sie gehen in der Komplexität, die Muster sind nicht so leicht zu erkennen. Um es schwieriger zu machen, stellen Ihre Daten nur eine Probe des zugrundeliegenden Prozesses dar. Das bedeutet, dass Stichprobenfehler (Ausreißer, Messfehler etc.) den theoretischen Identifikationsprozess verzerren können. Das ist der Grund, warum traditionelle ARIMA-Modellierung ist eine Kunst, anstatt eine Wissenschaft. Spreadsheet Umsetzung der saisonalen Anpassung und exponentielle Glättung Es ist einfach, saisonale Anpassung und passen exponentielle Glättung Modelle mit Excel führen. Die unten aufgeführten Bildschirmbilder und Diagramme werden einer Tabellenkalkulation entnommen, die eine multiplikative saisonale Anpassung und eine lineare Exponentialglättung für die folgenden vierteljährlichen Verkaufsdaten von Outboard Marine darstellt: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für Demonstrationszwecke verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es nur eine Glättungskonstante gibt, die optimiert werden soll. In der Regel ist es besser, Holt8217s Version, die separate Glättungskonstanten für Ebene und Trend hat. Der Prognoseprozess verläuft wie folgt: (i) Die Daten werden saisonbereinigt (ii) sodann für die saisonbereinigten Daten über lineare exponentielle Glättung Prognosen erstellt und (iii) schließlich werden die saisonbereinigten Prognosen zur Erzielung von Prognosen für die ursprüngliche Serie herangezogen . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt in der Saisonbereinigung besteht darin, einen zentrierten gleitenden Durchschnitt (hier in Spalte D) zu berechnen. Dies kann erreicht werden, indem der Durchschnitt von zwei einjährigen Durchschnittswerten, die um eine Periode relativ zueinander versetzt sind, genommen wird. (Eine Kombination von zwei Offset-Durchschnittswerten anstatt eines einzigen Mittels wird für die Zentrierung benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt besteht darin, das Verhältnis zum gleitenden Durchschnitt zu berechnen. Wobei die ursprünglichen Daten durch den gleitenden Durchschnitt in jeder Periode dividiert werden - was hier in Spalte E durchgeführt wird. (Dies wird auch Quottrend-Cyclequot-Komponente des Musters genannt, sofern Trend - und Konjunktur-Effekte als all dies betrachtet werden können Bleibt nach einer Durchschnittsberechnung über ein ganzes Jahr im Wert von Daten bestehen. Natürlich können die monatlichen Veränderungen, die nicht saisonal bedingt sind, durch viele andere Faktoren bestimmt werden, aber der 12-Monatsdurchschnitt glättet sie weitgehend Wird der geschätzte saisonale Index für jede Jahreszeit berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel erfolgt. Die Durchschnittsverhältnisse werden dann neu skaliert, so daß sie auf das genau 100-fache der Anzahl der Perioden in einer Jahreszeit, oder 400 in diesem Fall, das in den Zellen H3-H6 erfolgt, summieren. Unten in der Spalte F werden VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es repräsentiert. Der zentrierte gleitende Durchschnitt und die saisonbereinigten Daten enden wie folgt: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in derselben Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten beginnend in Spalte G. Über der Prognosespalte (hier in Zelle H9) wird ein Wert für die Glättungskonstante (alpha) eingetragen Zur Vereinfachung wird ihm der Bereichsname quotAlpha. quot zugewiesen (Der Name wird mit dem Befehl quotInsert / Name / Createquot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die hier verwendete Formel für die LES-Prognose ist die rekursive Einzelformel des Brown8217s-Modells: Diese Formel wird in der Zelle entsprechend der dritten Periode (hier Zelle H15) eingegeben und von dort nach unten kopiert. Beachten Sie, dass sich die LES-Prognose für den aktuellen Zeitraum auf die beiden vorherigen Beobachtungen und die beiden vorherigen Prognosefehler sowie auf den Wert von alpha bezieht. Somit bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich könnten wir statt der linearen exponentiellen Glättung einfach statt der linearen exponentiellen Glättung verwenden, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln erfordern würde, um das Niveau und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen von den Istwerten berechnet. Der Quadratwurzel-Quadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Dies ergibt sich aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)) 2.) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, weil das Modell nicht tatsächlich mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können das quotSolverquot verwenden, um eine genaue Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier angezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu zeichnen und ihre Autokorrelationen zu berechnen und zu zeichnen, bis zu einer Saison. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit Hilfe der CORREL () - Funktion berechnet, um die Korrelationen der Fehler selbst mit einer oder mehreren Perioden zu berechnen - Einzelheiten sind im Kalkulationsblatt dargestellt . Hier ist ein Diagramm der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei Null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas mühsam Saisonale Anpassungsprozess nicht vollständig erfolgreich war. Allerdings ist es eigentlich nur marginal signifikant. 95 Signifikanzbanden zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind etwa plus-oder-minus 2 / SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hier ist n gleich 38 und k variiert von 1 bis 5, so daß die Quadratwurzel von - n-minus-k für alle von etwa 6 ist, und daher sind die Grenzen für das Testen der statistischen Signifikanz von Abweichungen von Null grob plus - Oder-minus 2/6 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den Root-mean-squared-Fehler beobachten, der nachfolgend erläutert wird. Am Ende der Kalkulationstabelle wird die Prognoseformel quasi in die Zukunft gestartet, indem lediglich Prognosen für tatsächliche Werte an dem Punkt ausgetauscht werden, an dem die tatsächlichen Daten ablaufen - d. h. Wo die Zukunft beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellreferenz eingefügt, die auf die Prognose für diese Periode hinweist.) Alle anderen Formeln werden einfach von oben nach unten kopiert: Beachten Sie, dass die Fehler für die Prognosen von Die Zukunft werden alle berechnet, um Null zu sein. Dies bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern lediglich die Tatsache, dass wir für die Vorhersage davon ausgehen, dass die zukünftigen Daten den Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen wie folgt aus: Mit diesem für a-Periodenprognosen optimalen Wert von alpha ist der prognostizierte Trend leicht nach oben, was auf den lokalen Trend in den letzten 2 Jahren zurückzuführen ist oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist normalerweise eine gute Idee, zu sehen, was mit der langfristigen Trendprojektion geschieht, wenn Alpha variiert wird, weil der Wert, der für kurzfristige Prognosen am besten ist, nicht notwendigerweise der beste Wert für die Vorhersage der weiter entfernten Zukunft sein wird. Dies ist beispielsweise das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha setzt das Modell mehr Gewicht auf ältere Daten Seine Einschätzung des aktuellen Niveaus und Tendenz und seine langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend anstatt den jüngsten Aufwärtstrend wider. Dieses Diagramm zeigt auch deutlich, wie das Modell mit einem kleineren Wert von alpha langsamer ist, um auf quotturning pointsquot in den Daten zu antworten und daher tendiert, einen Fehler des gleichen Vorzeichens für viele Perioden in einer Reihe zu machen. Die Prognosefehler von 1-Schritt-Vorhersage sind im Mittel größer als die, die zuvor erhalten wurden (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null deutlich. Als Alternative zum Abkürzen des Wertes von Alpha, um mehr Konservatismus in Langzeitprognosen einzuführen, wird manchmal ein Quottrend-Dämpfungsquotfaktor dem Modell hinzugefügt, um die projizierte Tendenz nach einigen Perioden abflachen zu lassen. Der letzte Schritt beim Erstellen des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu veranschaulichen. Somit sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: Erstens Berechnen Sie den RMSE (root-mean-squared Fehler, der nur die Quadratwurzel der MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion zweimal des RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Ein-Perioden-Vorausprognose ungefähr gleich der Punktvorhersage plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr Hier ist die RMSE anstelle der Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil sie auch die Zufallsvariationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte Prognose werden dann reseasonalisiert. Zusammen mit der Prognose, durch Multiplikation mit den entsprechenden saisonalen Indizes. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste künftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95-Konfidenzintervall von 273,2-227,4 218,4 auf 273,2227,4 328,0 liegt. Das Multiplizieren dieser Limits durch Decembers saisonalen Index von 68,61. Erhalten wir niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punktprognose von 187,4. Die Vertrauensgrenzen für Prognosen, die länger als eine Periode vorangehen, werden sich in der Regel aufgrund der Unsicherheit über das Niveau und den Trend sowie die saisonalen Faktoren erweitern, da der Prognosehorizont zunimmt, aber es ist schwierig, diese im Allgemeinen nach analytischen Methoden zu berechnen. (Die geeignete Methode zur Berechnung der Vertrauensgrenzen für die LES-Prognose ist die Verwendung der ARIMA-Theorie, aber die Unsicherheit in den saisonalen Indizes ist eine andere Angelegenheit.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose über mehrere Zeiträume wünschen, Fehler zu berücksichtigen, ist Ihre beste Wette, empirische Methoden zu verwenden: Zum Beispiel, um ein Vertrauensintervall für eine 2-Schritt-Vorausprognose zu erhalten, könnten Sie eine weitere Spalte auf dem Kalkulationsblatt erstellen, um eine 2-Schritt-Vorausprognose für jeden Zeitraum zu berechnen ( Durch Booten der Ein-Schritt-Voraus-Prognose). Berechnen Sie dann die RMSE der 2-Schritt-Voraus-Prognosefehler und verwenden Sie diese als Basis für ein 2-stufiges Konfidenzintervall.


No comments:

Post a Comment